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Towards Fine-grained 3D Face Dense
Registration: An Optimal Dividing and Diffusing

Method
Zhenfeng Fan, Silong Peng, and Shihong Xia

Abstract—Dense vertex-to-vertex correspondence between 3D faces is a fundamental and challenging issue for 3D&2D face analysis.
While the sparse landmarks have anatomically ground-truth correspondence, the dense vertex correspondences on most facial regions
are unknown. In this view, the current literatures commonly result in reasonable but diverse solutions, which deviate from the optimum
to the 3D face dense registration problem. In this paper, we revisit dense registration by a dimension-degraded problem, i.e.
proportional segmentation of a line, and employ an iterative dividing and diffusing method to reach the final solution uniquely. This
method is then extended to 3D surface by formulating a local registration problem for dividing and a linear least-square problem for
diffusing, with constraints on fixed features. On this basis, we further propose a multi-resolution algorithm to accelerate the
computational process. The proposed method is linked to a novel local scaling metric, where we illustrate the physical meaning as
smooth rearrangement for local cells of 3D facial shapes. Extensive experiments on public datasets demonstrate the effectiveness of
the proposed method in various aspects. Generally, the proposed method leads to coherent local registrations and elegant mesh grid
routines for fine-grained 3D face dense registrations, which benefits many downstream applications significantly. It can also be applied
to dense correspondence for other format of data which are not limited to face. The core code will be publicly available
at https://github.com/NaughtyZZ/3D face dense registration.

Index Terms—3D Face, Dense Correspondence, Non-rigid Registration, 3D Morphable Model.
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1 INTRODUCTION

D ENSE registration of 3D face seeks canonical represen-
tation of different facial surfaces such that their de-

tailed structures can be compared. It is also named as dense
correspondence in many prior works since the dense vertex-
to-vertex mappings are established after the registration is
completed. Dense registration of 3D face is fundamental to
many downstream tasks for 3D and 2D facial analysis due
to the invariance of 3D shape to pose and illumination vari-
ations. For example, it is an essential step for 3D statistical
face modeling [3], [4], [5], [6], [7], [8], [9]. It has also activated
many solutions to problems for 2D faces [10], [11], [12], [13],
[14], [15], [16].

Dense registration of 3D face belongs to the common
non-rigid registration problem and has its own characters:

• It is an ill-posed optimization problem since the
solution is not uniquely defined. In a departure from
the rigid case for solving an optimal rigid motion,
the non-rigid registration problem belongs to a much
larger class that has no explicit formulation.

• It is a domain-specific problem targeted at 3D facial
surfaces. The intrinsic anatomical structure of face
should be considered as vital clues for vertex-to-
vertex correspondences to guide the non-rigid reg-
istration.

• The corresponding author: Shihong Xia
Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China, 100190
E-mail: xsh@ict.ac.cn

In the common case, the 3D shape (commonly surface
in real-life applications) non-rigid registration problem [17],
[18], [19], [20], [21] can be revisited as an optimization
problem for classical elastic shape similarity modeling [22],
[23]:

Given a template surface S and a target surface T , the problem
is to solve optimal parametrization that minimizes the following
deformation energy measuring the difference between two surfaces
as

E(S, T ) =

∫
Ω

(ks ‖I′ − I‖2F + kb ‖II′ − II‖2F )dudv. (1)

where is ‖·‖F is the Frobenius norm, I and II are the first and
second fundamental forms of the surface S , respectively,
and I′ and II′ are the corresponding forms of T as the de-
formed version of S . The first fundamental form measures
the difference between S and T in a 2D embedding space
on parameterized surface Ω, while the second fundamental
form measures the local difference of curvature. The two
terms in Eq. 1 are weighted by ks and kb for tangential and
normal distortions, respectively. This formulation favors the
non-rigid deformation to be locally rigid. However, local
rigidity is very abstract and Eq. 1 is difficult to be optimized
directly.

In a particular case for 3D face, the state-of-the-art
works [2], [24], [25], [26], [27] commonly achieve vertex-
to-vertex correspondence by a non-rigid deformation from
a template face S to a target face T . In a pairwise man-
ner, the template face is usually a well-customized mesh
as the initialization for registration. Then, the optimiza-
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Fig. 1. Qualitative results for two examplar faces in FaceScape [1] dataset (filename: (122)13 lip funneler.obj and (340)4 anger.obj). The input
target meshes are the initial results in correspondence with the template mesh by the NICP [2] method, and the output targets are the optimized
results by the proposed method in this work. Some corresponded vertices with notable differences by the proposed method from the input meshes
are marked with colored dots for better viewing.

tion for registration is generally modeled as an expecta-
tion–maximization (EM) problem as follows.

• E-step: searching for a plausible preliminary vertex-
to-vertex correspondence between S and T .

• M-step: solving an optimal non-rigid deformation
from S to T under some certain constraints.

The above process is in fact a generalization of the well-
known iterative closest point (ICP) algorithm [28], [29],
[30] for rigid registration to the non-rigid case by alter-
nating the above two steps. In the E-step, correspondence
of vertices is established with some certain rules, such as
landmark correspondence as hard feature constraint and
closest vertex correspondence as soft constraint. In the M-
step, the non-rigid deformation is usually modeled as some
locally smooth deformations, such as locally rigid transfor-
mation [31], [32] and locally affine transformation [2], [33].
For example, the NICP [2] algorithm includes a landmark
term together with a distance and a stiffness term in the
full objective function for optimization. The state-of-the-
art (SOTA) works commonly include feature matchings for
normal and curvature, e.g. the iterative closest normal point
(ICNP) methods [34], therefore achieve reasonable results
for minimizing the second term in Eq. 1. In this work,
we show that the result can be further optimized for the
first term of Eq. 1, which leads to better local rigidity, and
furthermore a unique solution to the registration problem.
This is neglected in the prior works yet a quite important
issue for 3D face correspondence. In fact, better optimization
for the first term in Eq. 1 results in superior representation
of 3D facial surface. And it also leads to coherent local
registration and elegant mesh grid routing referring to a
template mesh as shown in Fig. 1.

Optimizing the first term of Eq. 1 for dense correspon-
dence can be considered as dividing a surface according to
a certain template, as in Fig. 2. If we shrink the dimension
of the original problem from 3D surface to 2D plane, then it
becomes a problem to solve for optimal locations of vertices

to divide the plane into similar triangles. If we further
evolve the problem to the 1D case, then the definition is
clear and the result is unique (as in Fig. 2):

Given a template line with end points {a1, aN} and divid-
ing points {a2, ..., aN−1}, one can find optimal segmentations
{b2, ..., bN−1} on a target line with end points {b1, bN} by
satisfying

a1a2

b1b2
=
a2a3

b2b3
= · · · = aN−1aN

bN−1bN
. (2)

Fig. 2. Evolution from an original registration problem on a 3D surface to
a 2D plane, and finally to a 1D line by the “reasoning in lower dimension”
methodology.

While the segmentation of a line in a 1D Euclidean
space is simple, the generalization to a 3D surface on a
Riemann manifold requires extensive studies. In this paper,
we propose a novel dividing and diffusing method for
3D face dense registration. Starting from a target mesh in
correspondence with a template mesh, the proposed method
alternates between a dividing step and a diffusion step
to achieve fine-grained vertex-to-vertex correspondence be-
tween them. We further propose a multi-resolution (MR)
version of the dividing and diffusing method to facilitate
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the correspondence process. We show that the proposed
method is correlated to the minimization of the distance
between the template and the target face embedded in a
logarithmic metric space for local scaling. In summary, the
main contributions of this work are as follows:

• We propose a novel dividing and diffusing method
for fine-grained optimization of 3D face dense corre-
spondence, which leads to superior representation of
3D facial shape.

• We propose a multi-resolution version of the divid-
ing and diffusing method for fast convergence.

• We elucidate the physical meaning of the proposed
method as smooth rearrangement of a local scaling
metric for 3D facial shape, which leads to coherent
local registrations and elegant mesh grid routines.

2 RELATED WORK

3D face dense registration is an extremely non-linear op-
timization problem that requires a well initialization and
plausible constraints for optimization. If we consider the
problem as pairwise correspondence between two faces,
then the optimization problem can be initialized by a tem-
plate with a few labeled landmarks as feature correspon-
dence to the target. Most of the current works in this field
can be classified into deformation based and deformation
free ones according to their optimization strategies.

2.1 Deformation Based Method

These methods commonly deform a template face to a target
face under some constraints on reasonable initializations,
feature correspondences, and locally smooth deformations,
which are discussed respectively as follows.

Initialization. A well-customized template mesh is gen-
erally used as the initialization for a subsequent deforma-
tion process. Then, the template face is usually aligned to
the target face with a globally rigid or affine transformation
driven by a few labelled landmarks or some other significant
features in correspondence. For example, Mohammadzade
et al. [34] use automatically detected nose tip to guide
the global alignment of the template face to the target
face. Amberg et al. [2] use an affine transform to align the
template face to the target face with the correspondence of
a few annotated landmarks. Some other works [24], [31],
[35] adopt rigid transformations to align the template to the
target face. In particular, Fan et al. [32] construct a group of
locally rigid transformations to match the landmark loca-
tions exactly. The above methods generally employ rigid or
approximately rigid registrations as the preliminary step for
non-rigid deformation.

Feature correspondence. Deformation guided by feature
correspondence can maximally preserve the basic structure
of a human face, while being able to converge to a rea-
sonable solution for global optimization as well. Current
works [2], [35], [36] commonly use some pre-annotated
landmarks as feature correspondence across different faces.
Generally, each pair of landmarks in correspondence dom-
inates over other vertices in a local region around it. The
landmark correspondences control the holistic shape and

help to deal with expression variations in the guided defor-
mation. There are also some other works that use landmark-
free approaches in a departure from the landmark-based
feature correspondences. For example, Gilani et al. [37] use
level set geodesic curve to extract seed points automatically
for global and local deformations. Fan et al. [35] use some
high-entropy points, which can be considered as dense
feature points in significantly high-curvature areas of face
to guide the global deformation. Pan et al. [26] use some
denser points to model large deformations on the mouth
region. The denser points in these methods can be regarded
as robust representations of facial features, which are more
tolerant to individual landmark matching errors. However,
the capacity for guiding large deformation is discounted
without accurate and definite landmarks, therefore being
suboptimal for faces with large expressions to that with
neutral expression.

Smooth deformation. Locally smooth deformations also
preserve the basic structures of a 3D facial surface, while
enable the deformed template to adhere to the target face
gradually. Myronenko and Song [25] regularize the offset of
each vertex by total variation constraint for local smooth-
ness, as a general non-rigid registration method. Patel and
Smith [38] use a thin-plate spline warp towards the target
face for smooth deformation. Zhang et al. [39] incorporate
functional maps into the deformation process, and ensure
smooth local deformation by the low-frequency basis of the
eigenfunctions of the Laplace-Beltrami operators. The NICP
method [2] and its variant [40] incorporate locally affine
transformations as smooth deformations. Fan et al. [32]
construct a group of locally rigid transformations to guaran-
tee smooth shape deformations. The deformations in these
methods generally alternate with refined correspondence
for each vertex on a face as restrictive optimization to
acquire the results for non-rigid registration. In some other
methods [27], [41], [42], a prior model originated from a
number of face prototypes in correspondence are incorpo-
rated to fit the deformed target faces. However, this is a
chicken-and-egg problem and the correspondence problem
of face prototypes remains to be solved.

The deformation based methods are able to reach a
reasonable solution with an alternative EM approach for
minimizing Eq. 1. However, since most of these methods
employ different rules for both surface deformation and
vertex correspondence, they generally lead to distinct so-
lutions and neglect the optimality of the results. Therefore,
the 3D face dense correspondence problem has no standard
solution in the existing works. In this work, we propose a
dividing and diffusing algorithm to optimize the results for
3D face dense registration, in particular for the tangential
parameterization in the first term of Eq. 1, and achieve
stable results which are largely independent of preliminary
correspondences.

2.2 Deformation Free Method

Deformation free methods establish dense vertex-to-vertex
correspondence without an explicit deformation process.
These methods commonly involve some point matching
strategies with the guidance of a few significant features,
such as facial landmarks. Other geometric features such as
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curvature and normal are usually employed as signatures
for local shape matching. We list some representative meth-
ods in the literature as follows.

In the seminal work of 3D Morphable Model
(3DMM) [3], Blanz and Vetter propose to encode and map
both 3D shape and texture features to a 2D cylindrical coor-
dinate, and use a regularized optic-flow based algorithm for
dense correspondence of 3D faces.

Sun and Abidi [43] project geodesic contours around
some feature points onto their tangential planes, which are
further used as signatures for shape matching. This method
is further improved and applied to 3D face dense correspon-
dence by Salazar et al. [44] on the BU-3DFE dataset [45] for
modeling shape variation from large expressions.

Gu et al. [46], [47] propose a Ricci flow based method for
conformal mapping of a 3D facial surface to a 2D canonical
coordinate. Then, some uniform dividing strategies are con-
ducted, with a few pre-annotated landmarks as fixed feature
points.

Gilani et al. [48] first detect sparse correspondences on
the outer boundary of a 3D face, and then triangulate
existing correspondences and expand them iteratively by
matching points of distinctive surface curvature along the
triangle edges. Finally, the triangle mesh is refined by evolv-
ing level set geodesic curves.

The deformation free methods can be seen as employing
some indirect dividing strategies on the target facial surface.
Since the dividing of a 3D surface directly is difficult, some
of these methods reduce the dimension of the original
problem from 3D to 2D [3], [46], [47], [49]. However, the
limitation is that the intrinsic geometric features are only
represented approximately, since it is unable to isometrically
embed a non-flat 3D surface (e.g. 3D face) into 2D plane per-
fectly. This is particularly difficult for complex 3D surface,
such as 3D face with large expressions and 3D hand with
flexible joints. In this work, we propose a novel iterative
dividing and diffusing method on the original target facial
surface directly referring to the mesh architecture of a tem-
plate facial surface, in a departure from the existing indirect
dividing methods.

3 SEGMENTATION OF A LINE

A scientific methodology to solve a problem in high-
dimensional space is to first consider the problem in a low-
dimensional case. Following this idea we cast the registra-
tion problem for 3D facial surface as a line segmentation
problem shown in Fig. 2. The problem asks for a tuple
of optimal sub-lines {a1a2, ..., aN−1aN} on a target line
referring to a certain template line proportionately. One can
simply use a ruler to measure the length of the two lines
and then determine the dividing points according to Eq. 2.
Unfortunately, such a global ruler measuring the “length”
of a 3D surface does not exist, while the difference between
two surfaces can be compared locally. Keeping in mind that
we do not have a global “ruler”, we employ an iterative
approach to solve this segmentation problem instead. We
formulate the problem as a dividing and diffusing process
for solving Eq. 2 as follows.

Given a template line A with points {a1, ..., aN} and
a target line B with initialized corresponding points

{b1, b(0)
2 , ..., b

(0)
N−1, bN}, one can compute the optimal divid-

ing points {b∗2, ..., b∗N−1} on B by iteratively alternating the
following two steps:

1) Dividing. Compute each optimal point bi+1(i =
1, 2, ..., N −2) on B referring to each sub-line triplet
aiai+1ai+2 on A by satisfying

aiai+1

bi
(j)b

(j+1)
i+1

=
ai+1ai+2

b
(j+1)
i+1 b

(j)
i+2

, (3)

where j denotes the iteration number.
2) Diffusing. Denoting oi+1 = b

(j+1)
i+1 − b(j)

i+1 as the re-
newing offset for each point bi+1 in the jth iteration,
a local average strategy is applied as

o∗i+1 = (oi + 2oi+1 + oi+2)/4, (4)

and each renewed point is computed by

b
(j+1)
i+1 = b

(j)
i+1 + o∗i+1. (5)

The iterative process is able to reach a final solution
when the renewed offset

∣∣o∗i+1

∣∣ is smaller than a certain
threshold. Table 1 shows an example of the renewing pro-
cess for a target line referring to a corresponding template
line with N = 5. The total error to the ground truth as

Eg =
N−1∑
i=2

|bi − b∗i |, (6)

the total renewed offset as

Ot =
N−1∑
i=2

|o∗i |, (7)

and each renewing point {b1, ..., b5} are shown in Fig. 3.
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Fig. 3. Illustration of the iterative dividing and diffusing process in Ta-
ble 1. The change of some variables is shown.

This iterative process successfully achieves proportional
division of a target line according to a certain template line.
An additional advantage is its robustness to different initial-
izations. The result still converges to the optimal solution,
even if the initialized sublines intersect with each other,
i.e., bi > bi+1,∃ i. An example is shown in Fig. 4, where
the target line is initialized with b2 > b3. This indicates
that the generalized method on 3D surface can repair the
self-intersection caused by flawed deformation, which is an
attractive property for 3D face dense correspondence (also
see Fig. 1). However, the convergence speed is slow and can
be improved further. If we use a multi-resolution scheme,
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Iterative Line Segmentation w/o MR Scheme

Iteration Number Point Location
b1 b2 b3 b4 b5

0 0 4 6 8 9
1 0 3.36 5.74 7.97 9
2 0 2.97 5.57 7.90 9
5 0 2.48 5.35 7.69 9
10 0 2.29 5.27 7.54 9
18 0 2.25 5.25 7.50 9

Iterative Line Segmentation w/ MR Scheme

Iteration Number Point Location
b1 b2 b3 b4 b5

0 0 4 6 8 9
1 0 4 5.25 8 9
2 0 2.25 5.25 7.50 9

Ground Truth 0 2.25 5.25 7.50 9
Reference Template 0 3 7 10 12

TABLE 1
An example of the iterative dividing and diffusing process for point

correspondences. The points on the template line are {0, 3, 7, 10, 12},
and the points on the target line are initialized as {0, 4, 6, 8, 9}. It shows

that the renewing points gradually approach to the ground-truth ones
(directly computed via Eq. 2) as {0, 2.25, 5.25, 7.50, 9} in 18 iterations,

while a multi-resolution scheme accelerates this process.

i.e., first locate b3 for a coarse resolution and then locate
{b2, b4} for a fine resolution, two iterations are sufficient for
convergence as in Table 1. This motivates us to propose a
multi-resolution (MR) version of the dividing and diffusing
algorithm for 3D face dense registration, which will be
elaborated afterwards.
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Fig. 4. An example for the iterative method dealing with self-
intersected initialization. The points on the target line are initialized as
{0, 5.5, 3, 8, 9}, with b2 > b3 for self-intersection.

4 SEGMENTATION OF 3D FACIAL SURFACE

In this section, we propose an iterative dividing and dif-
fusing method for the registration of 3D facial surfaces.
Generalizing the algorithm in Section 3 from 1D line to 3D
surface requires appropriate definition of the “dividing” and
“diffusing” process, respectively. We employ local registra-
tion of a vertex’s 1-ring neighbors as the local “dividing”
process. We then construct a global optimization problem
with constraints on local smoothing for the “diffusing”
process. Contrary to the 1D case, the global optimization
on a 3D surface involves additional fixed feature points (e.g.
landmarks) on the surface and a least-square formulation is
put forward to deal with this issue.

4.1 Dividing

The local registration process starts from a pair of initially
registered template and target facial surfaces. We simply use
the 1-ring neighbors of a vertex as the basic local cell in the
common triangle mesh representation of 3D surface. Other
formats of data are also applicable by constructing a local
cell with some nearest neighboring vertices.

Let S = (Vs, Es,Fs) be a template mesh including n
vertices in Vs, m edges in Es, and l triangles in Fs; and
let T = (Vt, Et,F t) be the corresponding target mesh.
For each vertex vsi ∈ Vs, we denote its 1-ring neighbors
as N 1(vsi ) and its corresponding vertices on the target
as vti and N 1(vti). Then, we suppose there exists a rigid
transformation {Ri, Ti} that aligns vsi to vti , as

vti ← Riv
s
i + Ti(v

s
i ∈ Vs), (8)

where {Ri, Ti} can be estimated by a least-square alignment
problem of the surrounding 1-ring neighbors, as

{Ri, Ti} = arg min
Ri∈SO(3),Ti∈R3

∑
vs
j∈N 1(vs

i )

∥∥Riv
s
j + Ti − vtj

∥∥2

2
.

(9)
Here SO(3) denotes the space of all rank-3 orthonormal
matrices with the determinants to be 1 (i.e. Givens Matrices).
The problem in Eq. 9 can be solved efficiently by a singular
value decomposition (SVD) based method [50].

After the rigid transformation is obtained, we compute
the preliminary offset for each vertex by

oi = Riv
s
i + Ti − vti(vsi ∈ Vs). (10)

The local registration process is illustrated in Fig. 5.

Fig. 5. Illustration of the local registration process for a vertex’s 1-ring
neighbors.

4.2 Diffusing

The preliminary offset for each vertex in Eq. 10 should
not be managed isolatedly, since the adjacent vertices share
some common vertices in their 1-ring neighbors. Therefore,
we construct a diffusing (local smoothing) strategy to spread
out the local effect for global optimization. We denote
pti = Riv

s
i + Ti and formulate the problem as

{oi|i ∈ V} = arg min
{oi|i∈V}

{
∑
i∈V
‖pi − (vi + oi)‖22

+
∑
i∈V

(λi ·
∑

j∈N 1(vi)

‖oi − oj‖22)},
(11)
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where λi is the weights for diffusing of each offset and the
superscript t is omitted for brevity.

Solving Eq. 11 requires taking the partial derivative with
respect to each offset oi and leads to a linear system

([Iij ]n×n + [Aij ]n×n) · [Oij ]n×3 = [Cij ]n×3, (12)

where

Aij =


λi ·Nvi if i = j
−λi if i 6= j and j ∈ N 1(vi)

0 otherwise
, (13)

[Oij ]n×3 = [o1, ..., on]
T
, (14)

and
[Cij ]N×3 = [p1 − v1, ..., pn − vn]T . (15)

Here I is the identity matrix, Nvi is the number of vertices
in N 1(vi), and the superscript T denotes the operation for
matrix transpose. If we let B = I + A be the coefficient
matrix of Eq. 12, then B is a sparse and strict diagonal-
dominant matrix. The solution for Eq. 12 is discussed in two
different cases:

Case 1: Without Fixed Vertices. In this case, all vertices
are free to be renewed. Thus B is a full-rank square matrix
such that the linear system is well-posed and has a unique
solution as

O = B−1C. (16)

This is similar to the mesh correction algorithm proposed
in [35], which is applicable to neutral faces with small
deformations.

Case 2: With Fixed Vertices. In this case, some vertices
are fixed as constraints for solving Eq. 12, in which B is a
rank-deficient matrix. Let nf be the number of fixed vertices
(Vf ∈ V), we exclude the columns in B and the rows in O
which are related to the fixed vertices. Then Eq. 12 is equal
to

[Bij ]n×(n−nf ) · [Oij ](n−nf )×3 = [Cij ](n−nf )×3, (17)

which is an over-determined linear system. It can be further
converted to a well-posed system as

BTBO = BTC. (18)

Then the least-square solution to Eq. 17 is

O = (BTB)−1BTC. (19)

By this way, we are able to process the mesh by fixing
some already well-corresponded vertices while renewing
other vertices. This is particularly useful for faces with large
expressions, where feature points (e.g. landmarks) are used
to guide the overall correspondences.

The vertex on the target mesh is added by each offset in
O after solving Eq. 11, as

vti = vti + oi(i ∈ V/Vf ). (20)

Finally, the closest vertex on the target surface to the vertex
computed by Eq. 20 is used to update the target mesh.

4.3 The Overall Algorithm

The overall algorithm alternates between the above dividing
and diffusing process until the average of the renewed offset

Ōt =
1

n− nf

∑
i∈V/Vf

‖oi‖2 (21)

is smaller than a certain threshold ε. In practice, the imple-
mentation of the proposed method involves the following
details, which are not trivial.

Fig. 6. (a) Different classes of vertices;(b) Weights for global diffusing.

• Categorizing of Vertices. The raw scanning data are
commonly not able to capture some inner structures
accurately on a face, such as the nostril and the ear
regions. These structures are created from a template
face in many 3D face dense registration method. We
define the vertices in these regions as non-interested
vertices. The other vertices are defined as interested
vertices which are applied to the proposed method.
In addition, the interested vertices can be classified
into fixed vertices and free vertices. The fixed vertices
include the landmarks, the edges of facial mesh, and
the edges between interested and non-interested ver-
tices. Fig. 6 (a) shows the different classes of vertices.

• Effects of Fixed Vertices. The fixed vertices should
serve as constraints during the dividing and diffus-
ing process. We apply the dividing process for each
fixed vertex and its 1-ring neighbors. We then substi-
tute each preliminary offset oi(i ∈ Vf ) by Eq. 10 into
the diffusing process. However, we do not renew the
fixed vertices with Eq. 20 in the iterations. Therefore,
the fixed vertices are used to “drag” and “pull” the
neighboring vertices to correct locations. Taking a
row i for a fixed vertex in Eq. 17 for example, we
obtain

λi ·
∑

j∈N 1(vi)

oj = −(pi − vi), (22)

where the fixed vertex vi transmits a “reacting force”
to its neighboring vertices. To this end, we set the
weights λi for global diffusing in Eq. 11 to decrease
with the geodesic distance to the fixed vertices to
enlarge the effect of fixed features, as in Fig. 6 (b).

• Skills in Solving Eq. 18. We do not use Eq. 19 as
matrix inversion to solve Eq. 18 in practice. Since
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BTB is a symmetric positive definite matrix, we
adopt three steps:
I. Re-ordering of variables and allocating memory;
II. Cholesky factorization of BTB;
III. Substitution and iterative refinement.
Step I and II only require to be computed once in the
whole algorithm. Therefore, solving step III in the
sparse linear system is very fast by incorporating an
advanced computational tool1.

• Nearest Neighboring Vertex Searching on Surfaces.
In recent works [26], [35], [48], [51] for nearest ver-
tex searching on a 3D surface, a K-D tree architec-
ture [52] for point cloud is commonly used to acceler-
ate the computational process. However, the closest
vertex on a facial surface to a given vertex is not
necessarily a vertex in a K-D tree. It generally locates
insides a triangle unless the sampled point cloud is
extremely dense. In this work, we use an axis-aligned
bounding box (AABB) tree [53] considering both point
cloud (n vertices) and data structures (l triangles)
to improve the computational efficiency. This way
also leads to accurate location of nearest neighbor-
ing vertex. Fig. 7 shows the difference between the
results by the two different trees, which is commonly
neglected in the existing works for 3D face dense
registration. We use an advanced package2 for the
implementation of AABB tree and it only requires to
be built once for a certain target face in our method.

Fig. 7. The closest vertex searching on two different data structures. The
closest vertex to a given vertex q0 is q1 and q2 by the AABB tree and the
K-D tree, respectively.

The overall method is concluded in Alg. 1. This method
can generally filter out the non-uniform mesh grid routine
and achieve coherent local registrations for a target mesh, as
shown in Fig. 1. It also leads to better quantitative results for
a group of data, which will be elaborated in the experiments.

5 MULTI-RESOLUTION ANALYSIS

Section 3 shows that a multi-resolution (MR) version of the
dividing and diffusing algorithm on a line accelerates the
convergence speed greatly. In this section, we generalize
the multi-resolution based method to the facial surface and
expect this will also benefit the convergence speed. To this

1. https://pardiso-project.org/
2. https://libigl.github.io/

Algorithm 1 Iterative Dividing and Diffusing on Surface
Input:
A template mesh S = (Vs, Es,Fs)
A target mesh T = (Vt, Et,F t)
Output:
A target mesh Tout = (V, Et,F t)

1: Initilize V = Vt

2: Do re-ordering of variables, memory allocation, and
matrix factorization for Eq. 12

3: Build an AABB tree for T
4: while Ōt > ε do
5: Compute each offset oi(i ∈ V) by the dividing step

in Eq. 9 and Eq. 10;
6: Compute each regularized offset oi(i ∈ V) by the

diffusing step in Eq. 11;
7: Add each regularized offset oi(i ∈ V) to vi(i ∈ V) by

Eq. 20;
8: Traverse the AABB tree on T for closest vertex

searching and renew vi(i ∈ V) accordingly.
9: return Tout = (V, Et,F t)

end, the template face for registration is resampled into
different resolutions. We incorporate a hierarchical strategy
for the representation of 3D faces.

Since the proposed method starts from a template face
and a topological uniform target face by an existing method,
multi-resolution analysis on the template face is sufficient.
The counterpart on the target face follows the correspon-
dence of each vertex. We organize the vertices on a template
face in a pyramid structure with farthest point sampling (FPS)
method [54], which ensures uniform spacing of included
vertex in an iterative manner. Suppose that a template face
S = (Vs, Es,Fs) include N1 free vertices and N2 fixed
vertices (original feature points), the steps for the recon-
struction of a multi-resolution model are as follows.

1) Compute vertex-to-vertex geodesic distances on S .
2) Define the number of free vertices as a pyramid ar-

chitecture {N1, N1/4, ..., N1/4
k−1} with k different

levels decimated by a factor 4.
3) Initialize N2 fixed vertices as included vertices for

FPS.
4) Include {N1/4

k−1, N1/4
k−2, ..., N1} vertices

sequentially using FPS, such that the MR
model includes {N1/4

k−1 + N2, N1/4
k−2 +

N2, ..., N1 + N2} vertices for different resolutions
{MR(0),MR(1), ...,MR(k − 1)}, respectively.

We use a fast heat-flow based method [55] for the compu-
tation of vertex-to-vertex geodesic distance on the template
mesh, which is the metric for FPS in our method. In the
first coarse resolution MR(0), we use the original feature
points as fixed vertices and included vertices as free vertices.
In other resolutions, we use the vertices in the previous
resolution as fixed vertices, and the lately included vertices
in the current resolution as free vertices. The dividing and
diffusing algorithm is applied to each resolution in a cascade
manner. Finally, we denote the method in Section 4 as the
full-resolution MR(k) and apply it to reach the final results.
The different number of fixed and free vertices in each
resolution is summarized in Table 2.
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Fig. 8. An example of the customized multi-resolution model for a template face in the FaceScape dataset [1].

Resolution Free Vertices Fixed Vertices
MR(0) N1/4k−1 N2

MR(1) N1/4k−2 −N1/4k−1 N2 +N1/4k−1

... ... ...
MR(k − 1) N1 −N1/4 N2 +N1/4
MR(k) N1 N2

TABLE 2
The number of fixed and free vertices in different resolutions of the MR

model.

An example for the MR model in the FaceScape
dataset [1] is shown in Fig. 8, where we set k = 4. Unlike the
full-resolution model that the neighboring relationship of all
vertices are defined by the 1-ring neighbors of the triangle
mesh, this relationship for each vertex in other resolutions
requires to be customized. In this work, we define the
neighboring vertices by the following rules.

• If a vertex is on the edges of the mesh, we adopt two
vicinity vertices and another nearest vertex inside the
mesh as its neighbors.

• If a vertex is inside the mesh, we adopt six nearest
neighboring vertices as its neighbors.

• The neighboring relationship is symmetrized: i.e. if
vertex a is incident to vertex b, then we make b
incident to a as well.

In these rules, we use geodesic distance as the basic metric
for nearest neighbor searching. The neighboring relation-
ship is further used to replace the 1-ring setting in Eq. 11.

6 LOCAL SCALING METRIC

In this work, we consider the 3D face dense correspon-
dence problem in a low-dimensional way, and propose
an iterative dividing and diffusing method motivated by
simple proportional segmentation of a line. As a result, the
proposed method divides a target facial surface as rigidly as
possible referring to a given template facial surface, while
constrained by some fixed feature correspondences. In this
way, the proposed method forces the difference between
the target and template surface to vary in a locally smooth
manner. We make some modifications upon Eq. 2 and define

a similarity score vector between two faces according to their
edge differences as

Q = [
eT1
eS1
,
eT2
eS2
, ...,

eTm
eSm

], (23)

where eTi and eSi are the corresponding edge lengths of the
target and template face, respectively. The ratio eTi

eSi
(i ∈ E) is

equal to 1 if the corresponding edge lengths are the same.
We define the local scale embeding vector of a target face as

S(T ) = [log(
eT1
e0

1

), log(
eT2
e0

2

), ..., log(
eTm
e0
m

)] (24)

by taking a common template face S = (V0, E0,F0) and us-
ing the logarithmic notation, where e0

i (i ∈ E0) is the length
of each edge on the template face. By this way, the template
face locates at the origin [0, 0, ..., 0] in a high-dimensional
space. We define the induced local distance vector between
two faces T1 = (V1, E1,F1) and T2 = (V2, E2,F2) as

d(T1, T2) = |S(T1)− S(T2)|

= [| log(
e1

1

e0
1

)− log(
e2

1

e0
1

)|, ..., | log(
e1
m

e0
m

)− log(
e2
m

e0
m

)|]

= [| log(
e1

1

e2
1

)|, ..., | log(
e1
m

e2
m

)|],
(25)

where eki (i ∈ Ek, k = 1, 2) are the lengths of the correspond-
ing edges. We add up and average each element in Eq. 25
and obtain a global distance metric

D : T1 × T2 → R (26)

as

D(T1, T2) =
1

m

m∑
i=1

wi

∣∣∣∣log(
e1
i

e2
i

)

∣∣∣∣, (27)

where

wi =

∣∣e0
i

∣∣2
m∑
j=1

∣∣∣e0
j

∣∣∣2 (28)

is each normalized weight that compensates for different
edge lengths on the template face. The metric in Eq. 27
satisfies the following theorems.
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Fig. 9. Two examples in the FaceScape dataset [1]. The global distance metrics D for each face before and after optimization by the proposed
method are annotated, and the local distance vectors d are illustrated as color maps on the facial surfaces. Please zoom in to see the more smooth
and locally coherent details on the color maps after optimization.

Theorem I (Identity of Indiscernibles). Given two arbitrary
faces T1 and T2, we have

D(T1, T2) ≥ 0, (29)

and the equality holds if and only if

S(T1) = S(T2). (30)

Proof. Inequality 29 is correct since every element in Eq. 27
is positive. We now focus on proving

D(T1, T2) = 0⇔ S(T1) = S(T2). (31)

The steps are as follows.

D(T1, T2) = 0

⇔ 1

m

m∑
i=1

wi

∣∣∣∣log(
e1
i

e2
i

)

∣∣∣∣ = 0

⇔ [| log(
e1

1

e2
1

)|, ..., | log(
e1
l

e2
l

)|] = [0, ..., 0]

⇔ [
e1

1

e2
1

, ...,
e1
l

e2
l

] = [1, ..., 1]

⇔ [e1
1, ..., e

1
l ] = [e2

1, ..., e
2
l ]

⇔ [log(
e1

1

e0
1

), ..., log(
e1
m

e0
m

)] = [log(
e2

1

e0
1

), ..., log(
e2
m

e0
m

)]

⇔ S(T1) = S(T2).

(32)

Theorem II (Symmetry). Given the local scale embedding
vectors S(T1) and S(T2) of two arbitrary faces, we have

D(T1, T2) = D(T2, T1). (33)

Proof. Considering each of the elements in D(T1, T2) and
D(T2, T1), we have∣∣∣∣log(

e1
i

e2
i

)

∣∣∣∣ =

∣∣∣∣− log(
e1
i

e2
i

)

∣∣∣∣ =

∣∣∣∣log(
e2
i

e1
i

)

∣∣∣∣ (i = 1, ...,m). (34)

Thus Eq. 33 holds.
Theorem III (Triangle Inequality). Given the local scale
embedding vectors S(T1), S(T2), and S(T3) of three arbitary
faces, we have

D(T1, T3) ≤ D(T1, T2) +D(T2, T3). (35)

Proof. Considering each of the elements in D(T1, T3), we
have the following inequality∣∣∣∣log(

e1
i

e3
i

)

∣∣∣∣
=

∣∣∣∣log(
e1
i e

2
i

e2
i e

3
i

)

∣∣∣∣
=

∣∣∣∣log(
e1
i

e2
i

) + log(
e2
i

e3
i

)

∣∣∣∣
≤
∣∣∣∣log(

e1
i

e2
i

)

∣∣∣∣+

∣∣∣∣log(
e2
i

e3
i

)

∣∣∣∣ (i = 1, ...,m).

(36)

Then it follows

D(T1, T3) =
1

m

m∑
i=1

wi

∣∣∣∣log(
e1
i

e3
i

)

∣∣∣∣
≤ 1

m

m∑
i=1

wi(

∣∣∣∣log(
e1
i

e2
i

)

∣∣∣∣+

∣∣∣∣log(
e2
i

e3
i

)

∣∣∣∣)
= D(T1, T2) +D(T2, T3).

(37)

Theorem I to III guarantee mathematical rigorism for a
given metric and indicate that the local scale embedding
vector for each face can be treated as separable points in a
high-dimensional Euclidean space. Physically, we represent
the scale of a face locally referring to a template face in the
tangential direction of the target surface. The geometric fea-
tures of a face can be determined uniquely by the local scale
in combination with the curvature (in the normal direction
of the target surface). One merit of the local scale embedding
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vector in Eq. 24 as a pack of scalars is its invariance to rigid
transformations, thus represents the intrinsic features for a
face. The proposed dividing and diffusing algorithm tends
to minimize the global distance metric for two faces denoted
by Eq. 27. We show two examples in Fig. 9 for both the local
and global metrics in Eq. 25 and Eq. 27. We can see that the
global distance metric by Eq. 27 is significantly smaller after
applying the proposed method between two faces, while the
vector in Eq. 25 becomes more smooth and locally coherent
on the target surface. In Fig. 9, we can also see that the local
distance vector measures the degree of stretching (d > 0)
or shrinking (d < 0) of a face with respect to another face.
This is particularly meaningful as an indicator for shape
variances caused by different identities and expressions.

7 EXPERIMENT

Assessing the results for 3D face dense registration is not
an easy task. On the one hand, some feature vertices are
definite for anatomical significances and are visibly salient
for local shape and texture features. On the other hand, most
vertices for a dense face model are not definite with the
ground-truth. Some existing works commonly use indirect
ways for evaluation under different perspectives, such as
representation ability of resulted face model [27], [32], [48],
landmark localization accuracy [27], [36], [56], [57], [58], and
3D face recognition performance [35], [59], [60], [61]. In this
work, the proposed dividing and diffusing method gives
practicable definition to the problem by extending the fixed
feature correspondence to the overall dense correspondence.
Thus we treat 3D landmark detection (either manually or
automatically annotated) as a pre-processing step and do
not use it for evaluation. We do not use 3D face recognition
performance for evaluation either, since it requires post-
processing, such as shape clipping and feature extraction
fed into different classifiers. In addition to the commonly
used metric as groupwise representation ability of resulted
face model, we include extensive experiments including
computational efficiency, robustness to initialization, and
direct metric embedding tailored for the proposed method
for a full evaluation in different perspectives.

7.1 Datasets

We carry out the experiments on two publicly available
datasets including BU-3DFE [45] and FaceScape [1]. They
are two typical datasets since both of them are rich for
expressions and densely constructed by scans from multiple
directions. BU-3DFE includes 2, 500 facial samples with 6
different expressions in 4 different levels by 100 actors. The
resolution of raw scanning data is around 10, 000 vertices
per face. FaceScape is publicly available recently in 2020
and includes 18, 760 high-resolution (around 2, 000, 000 ver-
tices) 3D faces with 20 different expressions. It also provides
the registered faces which share the same topology as tri-
angle meshes with 26, 317 vertices and 52, 261 triangles. It
is worth mentioning that the collection of large and high-
quality 3D dataset is not an easy task. The existing works
on 3D dataset [4], [62], [63], [64] play indispensable roles for
the advancement of 3D face applications.
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Fig. 10. An example for convergence speed of the proposed method.
The full resolution version converges in 299 iterations, while the MR ver-
sion converges in 46,25,28,53, and 99 iterations for different resolutions
in a cascade manner.

7.2 Computational Efficiency & Convergence Analysis
In the proposed method, the sparse matrix decomposition,
the neighboring relationship of each vertex, and the multi-
resolution organization of vertices require to be computed
only once for a common template face. The building of
AABB tree is computed once for each target face in the
registration process. Thus we neglect the cost for these steps.
The local registration process and the iterative refinement
for solving Eq. 17 contribute to most of the computational
time in practice. The former involves small matrix multi-
plications (3 × Nvi ) and SVD decomposition (3 × 3) for
each vertex (totally n), while the latter involves iterative
substitution of a sparse rank-(n − nf ) coefficient matrix.
Thus the computational complexity for the full-resolution
version is approximately

CFull = o(n) + o(n− nf )

= o(nf ) + o(n− nf ).
(38)

In a MR version with the number of vertices growing expo-
nentially in each resolution, the computational complexity
is theoretically reduced to

CMR = o(nf ) + o(log(n− nf )). (39)

Thus the computational time increases linearly and logarith-
mically with the number of vertices for the full resolution
and the MR version of the proposed method, respectively.
In our implementation3, it requires 13.56s for the full-
resolution version on average for a model with 26, 317
vertices, while the MR model reduces the time to 5.85s.
Fig. 10 shows an example by setting the threshold in Eq. 21
to 0.001, which is normalized by the mean edge length of a
template face. We include both the full-resolution version
and the MR version for comparison. It shows that the
proposed method is very efficient, while the MR version
accelerates the convergence speed further. The faster con-
vergence of the MR version is due to both less iterations
and less vertices for operations in low-resolution steps.

3. We implement the proposed method on the software and hardware
environments of VC++2015 and i7-9700 (single thread), respectively.
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Fig. 11. The differences for per-vertex errors between the optimized
results from two different initialization methods as functions to the it-
eration steps. The errors for both the mean and standard deviation are
normalized to [0, 1] with a common factor in the errorbar map.

7.3 Definite with Stable Correspondence
Section 3 shows an example for iterative line segmentation
which results in a unique solution defined by Eq. 2. We
further guess that the proposed dividing and diffusing
method is also able to converge to a unique solution which
is independent to different initializations. We now test the
influence of different initialization methods and noisy ini-
tializations, respectively.

Initialization with different methods. First, we select
100 samples in the BU-3DFE dataset which cover different
identities and expressions. The initial correspondences of
these samples are established with two different and repro-
ducible methods, the NICP method [2] and a local shape
deformation (LSD) method [32]. We apply the proposed
method (full-resolution version) to these corresponding
samples and compare the average per-vertex errors between
the results from the initializations with the two different
methods. Fig. 11 shows the normalized results. We can see
that both the mean and the standard deviation of the errors
decrease with the number of iterations. This means that
the results by the proposed method are independent from
different initializations to some extent. The final residual
errors should be caused by different mesh-edge vertices
(as fixed vertices) and shape fitting errors in the normal
direction by different methods.

Initialization with noise. Then, we extract the corre-
sponded faces in the BU-3DFE dataset by the local shape
deformation method [32] and add different level of noise
on free vertices for each face in the tangential directions.
The distribution of noises on each vertex follows a uniform
distribution with variance σ2. Fig. 12 shows a qualitative
example of optimized meshes with different levels of added
noise. The average per-vertex errors between the results
from a clean target and that with noise are also annotated.
We can see that the proposed method is able to “repair”
the noisy mesh grid routine and leads to locally coherent
registrations. The vertex locations of corresponding faces
and the mesh structures on the results across different level
of noise are also stable. Therefore, the proposed method is

very robust to noisy initializations.
The above experiments on different initializations show

some evidences that the proposed method leads to stable
correspondences with the fixed vertices (fixed features and
mesh-edges). Therefore, the proposed method gives the
definition of vertex correspondences on smooth regions of
faces to some extent, which is a critical issue in the field of
3D face dense correspondence.

7.4 Evaluation with the Proposed Metric

Section 6 introduces a local scaling metric that forces the
registered target face to vary in a locally smooth manner
referring to a template face. We now use both the global
(Eq. 27) and local (Eq. 25) annotations for this metric to
evaluate the correspondence results for the FaceScape and
BU-3DFE dataset. We choose the topological uniform sam-
ples provided by the FaceScape dataset as initializations
for the proposed method. The dense correspondences of
these samples in topological uniform formats are achieved
by a classical NICP [2] method carefully with extra man-
ual assistance. Therefore, we consider this as an enhanced
NICP (E-NICP) baseline. The implementation of non-rigid
registration methods commonly involves a lot of parameter
settings and additional expertise in this field, against which
the public baseline for FaceScape dataset avoids the induced
subjective biases. In addition, we implement both the NICP
method [2] and the local shape deformation method [32]
as baselines for the BU-3DFE dataset. The parameters for
both of the two methods are carefully tuned to minimize
implementation errors.

First, we apply the proposed method (both the full-
resolution and MR versions) to the 16, 900 samples4 in
the FaceScape dataset and 2, 500 samples in the BU-3DFE
dataset. Table 3 shows the results for the global metric in
Eq. 27 averaged over all samples in comparison with those
by the baseline methods. We can see that the global metric is
smaller after applying the proposed method, which denotes
better coherent local deformations. In addition, the results
by the full-resolution version and the MR version show no
significant differences, since the full-resolution optimization
is adhered to the final step of the MR version in this work.

Then, we apply linear discriminative analysis (LDA)
to the local scaling embedding vectors of 16, 900 samples
with respect to 20 different expression labels. We show the
clustering results for the first 2 dimensions before and after
applying the proposed method in Fig. 13 (a) and Fig. 13
(b), respectively. It shows that the discriminate ability with
respect to different expressions is largely improved after
applying the proposed method. Specifically, the expressions
with jaw left, neutral, brow raiser, and jaw forward (see Fig. 14
for an example) are mixed sequentially in pairs with each
other for original representations with the E-NICP method,
whereas they are separated after optimization by the pro-
posed method. This demonstrates that the proposed method
leads to better discriminative representation for 3D facial
shape, which is beneficial to many downstream applica-
tions.

4. We exclude some problematic data in this dataset.
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Fig. 12. Qualitative results for an exemplar face with different level of noise in the BU-3DFE dataset. Both the average per-vertex errors and the
standard deviations of added noise are normalized by the mean edge length of a template face. Please zoom in to see the details for mesh grid
routine.
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Fig. 13. Clustering results by LDA with respect to 20 different expressions for 16, 900 samples on the FaceScape dataset. The 4 mixed expressions
are marked with arrows on the maps and bold typeface on the legend.

Dataset FaceScape [1] BU-3DFE [45]
Baseline Method E-NICP [1] NICP [2] LSD [32]

Before Opt. 0.061 0.058 0.055
After Opt.(Full) 0.044 0.042 0.041
After Opt.(MR) 0.045 0.042 0.042

TABLE 3
Average quantitative results for the global metric on 16, 900 samples of

the FaceScape dataset and 2, 500 samples of the BU-3DFE dataset
before and after the proposed optimization method. The (enhanced)
NICP and the local shape deformation (LSD) method are used as

baselines for the initializations of the correspondence results.

Fig. 14. An example for faces (ID: 395) with 4 different expressions.
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Fig. 15. (a) Compactness, (b) generalization, and (c) specificity for low-dimension representations before and after applying the proposed method.

7.5 Compactness, Generalization, and Specificity for
Low-dimensional Representations

Fig. 1 shows that the proposed method leads to locally
coherent results between the template mesh and the target
mesh qualitatively. We hope the pairwise locally coherent
results also benefit the global groupwise representations of
3D facial shapes. We follow a common practice [65] for
the evaluation of statistical shape models using compactness,
generalization, and specificity. We use the topological uniform
data in the FaceScape dataset as standard baseline for the
E-NICP method.

Training&Test Set Split. The 3D faces in the FaceScape
dataset include 938 identities with 20 typical expressions.
We include the first 400 identities (7, 995 samples) as the
training set and the rest 538 identities (8, 905 samples) as
the test set. We apply principal component analysis (PCA) to
the aligned training samples to achieve a low-dimensional
representative model referring to the 3DMM [3] pipeline.

Compactness is measured by the percentage of variance
retained by the PCA model. Compactness is a vital property
of data for dimension reduction. It is evaluated by a mini-
mum description length principle [66] in the machine learning
community as “the less, the better”. We compare the PCA
models constructed from samples before and after applying
the proposed methods, respectively. The results are shown
in Fig. 15 (a). The first 20 principal components explain
90.38% and 91.19% of the variances by the baseline model
and that achieved by the proposed method, respectively.
This demonstrates better compactness of low-dimensional
models by the proposed method, which indicates accurate
correspondence of 3D faces.

Generalization measures the ability of a model to rep-
resent novel facial shapes that are not included in the train-
ing samples. We use the low-dimensional models, which
are constructed with the training samples before and after
applying the proposed method, respectively, to represent
the test samples with different number of principal com-
ponents. The mean vertex representation errors (as per-
vertex L2 distances) averaged over all samples are shown
in Fig. 15 (b). We observe that the generalization error
is reduced notably after applying the proposed method
to the corresponding training samples. Fig. 16 also shows

a qualitative result for the representation of an exemplar
facial sample with 20 principal components, where there
are visible differences between the models before and after
applying the proposed method. These results demonstrate
that the proposed method leads to not only better mesh grid
routines (as in Fig. 1) but also enhanced ability to represent
shape variances.

Fig. 16. An exemplar face (filename: (594)3 mouth stretch.obj) show-
ing the difference between the generalization errors before and after
applying the proposed method.

Specificity measures the validity of generated faces by a
representative model. We assume each principal component
of the model follows Gaussian distribution with certain
variances and randomly generate novel instances for a
fixed number of principal components according to each
Gaussian distribution model. The generated samples are
then used to search their closest samples on the test set
with minimum Euclidean distances. Fig. 15 (c) shows the
average per-vertex distances with 1, 000 generated samples
for different settings of principal component number. It
shows that the results by the proposed method achieve
smaller specificity error compared with the baseline method.
This demonstrates the effectiveness of the generative model
for synthesizing novel facial samples.

7.6 Failure Cases
The proposed method has been tested with a variety of facial
data and can generally “repair” the non-uniform mesh grid
routine on corresponded faces, even if the initialization is
corrupted by tremendous noise (see Fig. 12) in the tangential
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direction. However, the proposed method cannot achieve a
“clean” result when the facial surface is not reconstructed
properly by a scanning device. A failure example in the
FaceScape dataset is shown in Fig. 17, where the initial
corresponded result by the E-NICP method fails to represent
the ground-truth facial surface in the normal direction.
The proposed method is not able to solve this problem
thoroughly, although most of the non-uniform mesh grid
routines are rectified. Therefore, we suggest that the pro-
posed method can expand its applications in combination
with the state-of-the-art surface denoising methods.

Fig. 17. A failure case for dense registration where the initialization fails
to represent the ground-truth surface. Both the near-frontal view and the
bottom-up view are shown. Please also zoom in to see the corrective
mesh grid routine as a positive effect of the proposed method.

7.7 Application to Other Format of Data

The proposed dividing and diffusing method can be also
applied to other format of data which are not limited to
face. In fact, it is able to achieve fine-grained correspondence
and repair the non-uniform mesh grid routine given a pair
of initially registered template and target surface. Fig. 18
shows an example for hand mesh data. The common ground
between the face and the hand is that they have both fixed
vertices (feature points) and free vertices in the setting for
dense registration. The proposed method is general under
this assumption, and is thus very useful in a variety of
applications for surface registration.

8 CONCLUSION

We propose a dividing and diffusing method for the reg-
istration of 3D facial surface in this paper. The proposed
method is motivated by proportional segmentation of a
line, and alternates between local dividing and global dif-
fusing, to finally achieve pairwise and fine-grained dense
correspondence of 3D facial surface. We further elucidate
the physical meaning of the proposed method as smooth

Fig. 18. An example for the optimization of registered hand mesh data.
The fixed vertices are shown in red dot.

rearrangement of a local scaling metric for 3D facial shape.
Extensive experiments have demonstrated its effectiveness,
including computational efficiency, robustness to initializa-
tions, metric embedding property, and representation abil-
ity of resulted face model. The proposed method can be
also used to establish correspondences for other format of
surface data, such as hands. Generally, it gives a plausible
definition for vertex correspondence on smooth regions for
3D face, and leads to locally coherent details and elegant
mesh grid routines for dense registrations, which we hope
is helpful for a variety of applications.

There is a remaining issue in the proposed method
as well as in other existing works. We link the proposed
method to the fundamental forms in Eq. 1 for shape analysis
in this paper. We assume that the second fundamental form
for curvature can be well established by a number of feature
points, based on which we optimize the first fundamental
form for surface parameterization. However, we observe
that some high-curvature features on facial surface cannot
be uniquely determined if the number of landmarks is not
enough. On the contrary, the accuracy of pre-annotated
landmarks is a burden if we include too many of them
which are not very salient, especially for raw scanning data
with tremendous noise. Therefore, balancing the number
and accuracy of facial landmarks as well as including soft
constraints versus hard feature constraints deserves further
study. In the future, we will explore automatic and accurate
landmark localization methods on point clouds for 3D facial
data. We will also study “soft” method to take into consid-
eration noisy feature matchings for robust 3D face dense
correspondence with lifted performance.
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B. Sankur, and L. Akarun, “Bosphorus database for 3d face anal-
ysis,” in European Workshop on Biometrics and Identity Management,
pp. 47–56, 2008.

[63] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the
face recognition grand challenge,” in IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, pp. 947–954, 2005.

[64] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou, “Facewarehouse:
A 3d facial expression database for visual computing,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 3,
pp. 413–425, 2013.

[65] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J.
Taylor, “A minimum description length approach to statistical
shape modeling,” IEEE Transactions on Medical Imaging, vol. 21,
no. 5, pp. 525–537, 2002.

[66] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, 1978.

Zhenfeng Fan received the B.S. degree in
Dalian University of Technology in 2012, M.E.
degree in the Institute of Electronic, Chinese
Academy of Sciences (CAS) in 2016, and Ph.D.
degree in the Institute of Automation, CAS, in
2020. He is currently an assistant professor
in the Institute of Computing Technology, CAS.
His research interest includes 3D facial analy-
sis, point cloud registration, and image super-
resolution.

Silong Peng received the B.S. degree in mathematics from the Anhui
University in 1993, and the M.S. and Ph.D. degrees in mathematics
from Institute of Mathematics, Chinese Academy of Sciences (CAS),
in 1995 and 1998, respectively. From 1998 to 2000, he worked as a
postdoctoral researcher in the Institute of Automation, CAS. During this
period, he was also a visiting scholar with Department of Mechanics and
Mathematics, Lomonosov Moscow State University, Russia. In 2000, he
became a full professor of signal processing and pattern recognition in
Institute of Automation, CAS. His research interests include wavelets,
multi-rate signal processing, and digital image processing.

Shihong Xia received the B.S. degree in mathematics from the Sichuan
Normal University in 1996, and the M.S. and Ph.D. degree in computer
science from the University of Chinese Academy of Sciences (CAS)
in 1999 and 2002, respectively. From 2007 to 2008, he was a visit-
ing scholar with the Robotics Institute, School of Computer Science,
Carnegie Mellon University, USA. He is currently a professor of the
Institute of Computing Technology, CAS, and is the director of the human
motion laboratory. His primary research is in the area of computer
graphics, virtual reality and artificial intelligence.


	1 Introduction
	2 Related Work
	2.1 Deformation Based Method
	2.2 Deformation Free Method

	3 Segmentation of a Line
	4 Segmentation of 3D Facial Surface
	4.1 Dividing
	4.2 Diffusing
	4.3 The Overall Algorithm

	5 Multi-resolution Analysis
	6 Local Scaling Metric
	7 Experiment
	7.1 Datasets
	7.2 Computational Efficiency & Convergence Analysis
	7.3 Definite with Stable Correspondence
	7.4 Evaluation with the Proposed Metric
	7.5 Compactness, Generalization, and Specificity for Low-dimensional Representations
	7.6 Failure Cases
	7.7 Application to Other Format of Data

	8 Conclusion
	References
	Biographies
	Zhenfeng Fan
	Silong Peng
	Shihong Xia


